Assignment 1: Due Wednesday the $31^{\text {st }}$. Note that these problems should be typed.

1) Prove the first half of 25.1.c. Type up your solution and turn it in.
2) Find a chain of 1000 subgroups (similar to the slide earlier in this presentation)
3) Prove the uniqueness of the identity (or inverses if you like) without using cancelation.

Assignment 2: Due Monday the $26^{\text {th }}$.

1) Is this a group? The set of all functions from $\{A, B, C\}$ to $\{A, B\}$ under composition. Why or why not?
2) Find all the subgroups of \mathbb{Z}_{16} and draw a diagram illustrating their containment.

Assignment 3: Mini-project. Presentations on Wednesday the $28^{\text {th }}$.
Tell us everything you can about your group. (5-10 minute presentation using the whiteboards)

- $D_{2 \cdot 6}$
- $G L_{2}(\mathbb{R})$
- $G L_{2}\left(\mathbb{Z}_{2}\right)$
- \mathbb{Z}_{15}
- $\mathbb{Q}_{=8}:=\{ \pm 1, \pm i, \pm j, \pm k\}$ such that $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i$, and $i k=-k i=j$
- They set $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ under addition such that the first component is computed mod 6 , and the second component is computed mod 2 . For example $(2,1)+(3,1)=(5,0)$.
- The set of all bijective functions on $\{A, B, C\}$ under composition.

Assignment 4: Note that this problem should be typed.
Let G be a group of order 15 . Let H be a proper subgroup of G. Prove that H is cyclic.

